Dãy Số Có Quy Luật

     

PHƯƠNG PHÁP TÍNH

Để tính được tổng dãy số lũy thừa tất cả quy luật thì cần phải bao gồm phương pháp giải. Đó là những phương pháp:

1. Phương pháp quy nạp

*
*

2. Sử dụng phương pháp khử liên tiếp tính tổng hàng số

*
*

CÁC DẠNG TOÁN TÍNH TỔNG DÃY SỐ LŨY THỪA

Với các dạng toán dưới đây, những em dùng phương pháp tính nêu ở bên trên để áp dụng vào giải.

Bạn đang xem: Dãy số có quy luật

1. Dạng toán giải phương trình với ẩn là tổng cần tìm

Ví dụ 1: Tính tổng: S = 1+2 +22 + . . . +2100(*)

Hướng dẫn:

Cách 1:Ta viết lại S như sau:

S = 1+ 2(1 +2 +22 + . . .+ 299)

S = 1 + 2(1 + 2 + 22 + . . .+ 299 + 2100– 2100)

⇒ S = 1 + 2(S – 2100) = 1+2S – 2101

⇒ S = 2101– 1

Cách 2: Nhân 2 vế với 2, ta được:

2S = 2(1 +2 +22 + . . . 2100)

⇔ 2S = 2 +22 + 23 + . . .+ 2101(**)

– Lấy (**) trừ đi (*) ta được:

2S – S = (2 + 22 + 23 + . . . +2101) – (1 +2 +22 +. . . +2100)

⇔ S = 2101– 1.

Tổng quát mang lại dạng toán này như sau:

$S_n=1+a+a^2+ldots+a^n ;(a, n in mathbbN, a>1, n geq 1)$

Ta nhân cả 2 vế của Sn với a. Rồi TRỪ vế với vế ta được: $S_n=dfraca^n+1-1a-1$

Ví dụ 2:Tính:

S =1 – 2 + 22– 23 + 24– . . . – 299 + 2100

Hướng dẫn:

Ta có:

2S = 2(1 – 2 +22– 23 + 24–. . . – 299 + 2100)

⇔2S = 2 – 22 + 23– 24 + 25–. . . – 2100 + 2101

⇔2S S = (2 – 22 + 23– 24 + 25–. . . – 2100 + 2101) (1 – 2 + 22– 23 + 24– . . . – 299 + 2100)

⇔ 3S =2101 + 1.

⇔ $S=dfrac2^101+13$

Tổng quát mang đến dạng toán này như sau:

$S_n=1-a+a^2-a^3+ldots-a^2 n-1+a^2 n ;(a, n in mathbbN, a>1, n geq 1)$

Ta nhân cả 2 vế của Sn với a. Rồi CỘNG vế với vế ta được: $S_n=fraca^2 n+1+1a+1$

Ví dụ 3:Tính tổng:

S = 1+32 + 34 + . . .+ 398 + 3100(*)

Hướng dẫn:

– Với việc này, mục tiêulà nhân 2 vế của S với một số nào đó nhưng khi trừ vế với về thì ta được những số khử (triệu tiêu) liên tiếp.

– Đối với bài xích này, ta thấy số mũ của 2 số liên tiếp giải pháp nhau 2 đơn vị phải ta nhân nhì vế với 32rồi áp dụng phương pháp khử liên tiếp.

Xem thêm: Sự Kiện Pháp Lý Làm Phát Sinh Quan Hệ Pháp Luật, Phân Loại Và Ý Nghĩa Của Sự Kiện Pháp Lý

S = 1+32 + 34 + . . .+ 398 + 3100

⇔ 32.S = 32(1 +32 + 34 + . . . +398 + 3100)

⇔ 9S= 32 + 34 + . . .+ 3100 + 3102 (**)

– Ta Trừ vế với vế của (**) mang đến (*) được:

9S-S= (32 + 34 + . . . 3100 + 3102) – (1+32 +34 + . . . +398 + 3100)

⇔ 8S = 3102– 1

⇔ $S=dfrac3^102-18$

• Tổng quát mang lại dạng toán này như sau:

$S_n=1+a^d+a^2 d+ldots+a^n d ;(a, n, d in mathbbN ; a>1)$

Ta nhân cả 2 vế của Snvới ad. Rồi TRỪ vế với vế ta được:

$S_n=dfraca^(n+1) d-1a^d-1$

Ví dụ 4:Tính:

S = 1 – 23 + 26– 29 . . . +296– 299(*)

Hướng dẫn:

– Lũy thừa các số liên tiếp phương pháp nhau 3 đơn vị, nhân 2 vế với 23ta được:

23.S = 23.(1 – 23 + 26– 29 +. . .+ 296– 299)

⇒ 8S = 23– 26 + 29– 212 +. . . +299– 2102(**)

– Ta CỘNG vế với vế (**) với (*) được:

8S S = (23– 26 + 29– 212 +. . . +299– 2102) (1 – 23 + 26– 29 +. . .+ 296– 299)

⇔ 9S = 1 – 2102 ⇔ $S=dfrac1-2^1029$

Tổng quát đến dạng toán này như sau:

$S_n=1-a^d+a^2 d-a^3 d+ldots+a^n d ;(a, n, d in mathbbN ; a>1)$

Ta nhân cả 2 vế của Snvới ad. Rồi CỘNG vế với vế ta được:

$S_n=dfrac1-a^(n+1) da^d+1$

2. Dạng toán vận dụng công thức tính tổng những số hạng của hàng số giải pháp đều

Để đếm được số hạng của 1 hàng số nhưng 2 số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức:

Số số hạng = <(số cuối – số đầu) : (khoảng cách)> + 1

Để tính Tổng những số hạng của một dãy mà lại 2 số hạng liên tiếp biện pháp đều nhau 1 số đơn vị ta cần sử dụng công thức:

Tổng = <(số đầu + số cuối) . (số số hạng)> : 2

Ví dụ 1: Tính tổng: S = 1+3+5 +7 +… +39

Hướng dẫn:

Số số hạng của S là: (39-1):2+1 = 19+1 = 20.

Tổng S = <20.(39+1)>:2 = 10.40 = 400.

Ví dụ 2: Tính tổng: S = 2+5+8+…+59

Hướng dẫn:

Số số hạng của S là: (59-2):3+1 = 19+1 = 20.

Tổng S = <20.(59+2)>:2 = 10.61 = 610.

Xem thêm: Soạn Văn Bài Vợ Chồng A Phủ Ngắn Nhất, Soạn Bài Vợ Chồng A Phủ

3. Dạng toán tổng hợp vận dụng những tổng đã biết

Ký hiệu: $sum_i=1^n a_i=a_1+a_2+ldots+a_n$

Tính chất:

$sum_i=1^nleft(a_i+b_i ight)=sum_i=1^n a_i+sum_i=1^n b_i$

$sum_i=1^n a cdot a_i=a sum_i=1^n a_i$

Ví dụ:Tính tổng: Sn = 1.2+2.3 +3.4 … n(n+1)

Hướng dẫn:

Ta có: $S_n=sum_i=1^n i(i+1)=sum_i=1^nleft(i^2+i ight)=sum_i=1^n i^2+sum_i=1^n i$

Mặt khác, lại có:

$sum_i=1^n i=1+2+3+ldots+n=fracn(n+1)2$(theo PP quy nạp ở mục I).

$sum_i=1^n i^2=dfracn(n+1)(n+2)6$ (theo PP quy nạp ở mục I)

⇒ $S_n=dfracn(n+2)2+dfracn(n+1)(n+2)6=dfracn(n+1)(n+2)3$

BÀI TẬP VẬN DỤNG

Bài 1: Tính tổng: S = 3 + 8 + 13 + 18 + … + 228

Bài 2:Tính những tổng sau:

a)S = 6 +62 + 63 + … +699 + 6100

b) S = 5 +11 +17 … + 95 +101

c)$S=dfrac11cdot 2+dfrac123+dfrac13cdot 4 ldots+dfrac149cdot 50$

d)$S=dfrac65cdot 7+dfrac679+dfrac69cdot 11+ldots+dfrac657cdot 59$

Bài 3:Chứng minh

a) 1.4 +4.7 +7.10 … + (3n-2)(3n+1) = n(n+1)2

b)$dfrac12+dfrac14+dfrac18+ldots+dfrac12^0=1-dfrac120$